US009405819B2

a2 United States Patent 10) Patent No.: US 9,405,819 B2
Stergiou et al. 45) Date of Patent: Aug. 2, 2016
(54) EFFICIENT INDEXING USING COMPACT 7,058,628 Bl 6/2006 Page
DECISION DIAGRAMS 7,216,312 B2 5/2007 Jain et al.
7,647,299 B2* 1/2010 Harik
. . 2002/0091671 A1* 7/2002 Prokoph ..cccoovccceveneriies 707/1
(75) Inventors: Stergios Ste.rglou, Sunnyvale, CA (US); 5004/0093571 Al 52004 Jain eF al.
Jawahar Jain, San Jose, CA (US) 2004/0205044 A1* 10/2004 Suetal.
2004/0260667 Al* 12/2004 Huelsman et al.
(73) Assignee: Fujitsu Limited, Kawasaki-shi (JP) 2005/0171747 A1* 8/2005 Francoetal. 703/2
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Compressing Inverted Files in Scalable Information Systems by
U.S.C. 154(b) by 1250 days. Binary Decision Diagram Encoding, Chung-Hung Lai and Tien-Fu
Chen, Nov. 2001 .*
(21) Appl. No.: 12/026,897 Brace, et al. “Efficient Implementation of a BDD Package,” 1990
. IEEE, Paper 3.1, 27th ACM/IEEE Design Automation Conference,
(22) Flled: Feb. 6, 2008 PP 40_45’ 1990.
. L. Japanese Office Action with English translation; Application No.
(65) Prior Publication Data 2008-028072; pp. 5, Oct. 9, 2012.
US 2008/0243907 A1 Oct. 2, 2008 (Continued)
Related U.S. Application Data Primary Examiner — Sherief Badawi
(60) Provisional application No. 60/899,874, filed on Feb. Assistant Examiner — Christopher J Raab
7,2007. (74) Attorney, Agent, or Firm — Baker Botts L.L..P.
(51) Imt.ClL 67 ABSTRACT
GOG6F 17/30 (2006.01) In one embodiment, a method includes accessing an inverted
GO6N 5/00 (2006.01) index of a searchable set of objects including key words. The
(52) US.CL inverted index includes multiple lists each corresponding to a
CPC ... GO6F 17/30613 (2013.01); GO6N 5/003 particular key word and identifying a particular subset of the
(2013.01) objects including the particular key word. The method
(58) Field of Classification Search includes generating a binary decision diagram (BDD) for
USPC o, 709/223;,707/1, 2, 3, 102 each of one or more of the lists. The BDD corresponds to the
See application file for complete search history. particular key word of the list, and each decision node of the
. BDD represents an object in the searchable set of objects
(56) References Cited including the particular key word of the list. The method

U.S. PATENT DOCUMENTS

6,285,999 Bl 9/2001 Page
6,651,096 B1* 11/2003 Gaietal. ... 709/223
6,799,176 Bl 9/2004 Page

14~
CLIENT

14~

CLIENT

includes storing each of one or more of the lists as its BDD.
Storage of the BDD facilitates more efficient storage of the
inverted index.

22 Claims, 2 Drawing Sheets

18

/

APPLICATION SERVER

WEB SEARCH |22
ENGINE

INDEXING ENGINE 24

DECISION
DIAGRAM ENGINE

™26

14~
CLIENT
WEB
16— SERVER
161
° WEB
SERVER

WEB SEARCH

DATA |28

™16

US 9,405,819 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Makinouchi et al.; “Toward the Information Base Model and Its
Implementation Technique for Avanced Applications”; Study Report
of IPSJ, Japan; Information Processing of Japan, vol. 96, No. 11; pp.
147-156, Jan. 25, 1996.

Inoue et al.; “Disk Storage Design of Shared Indices and Its Appli-
cation toTransitive Closure Compputation”; Study Report of IPSJ,
Japan; Information Processing Society of Japan, vol. 96, No. 11; pp.
123-130, Jan. 25, 1996.

* cited by examiner

US 9,405,819 B2

Sheet 1 of 2

Aug. 2, 2016

U.S. Patent

8¢

v1ivd
HOWV3S 93Im

9¢~

ANIONT WyH9VId
NOISI03d

A

ANIONT ONIX3ANI

Zadl

3NIONS
HOYV3S 9Im

d4AH3S NOILVYOI'lddY

=

81

['DIA

91~

d1Ad3S
gam

NHOMLIN

uingas 9t

dam

yingas 9t
gIM

\

INAIO
"

INJINO

vl

INTND

RS

vl

U.S. Patent Aug. 2, 2016 Sheet 2 of 2 US 9,405,819 B2

US 9,405,819 B2

1
EFFICIENT INDEXING USING COMPACT
DECISION DIAGRAMS

RELATED APPLICATION

This Application claims the benefit, under 35 U.S.C. §119
(e), of Provisional U.S. Patent Application No. 60/899874,
filed 7 Feb. 2007.

TECHNICAL FIELD

This disclosure relates generally to data structures for
searching objects, such as web pages in the World Wide Web.

BACKGROUND

Binary decision diagrams (BDDs) have a variety of poten-
tial applications, since BDDs are useful in many areas of
computer science. However, BDDs tend to suffer from space
blowup. Even in the absence of space blowup, BDDs often
run a significant risk of becoming too large for many appli-
cations.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example system for efficient indexing
using compact decision diagrams;

FIG. 2 illustrates an example BDD;

FIG. 3 illustrates an example traversal of the BDD; and

FIG. 4 illustrates another traversal of the BDD.

DESCRIPTION OF EXAMPLE EMBODIMENTS

FIG. 1 illustrates an example system 10 for efficient index-
ing using compact decision diagrams. System 10 includes a
network 12 coupling one or more clients 14, one or more web
servers 16, and an application server 18 to each other. In
particular embodiments, network 12 is an intranet, an extra-
net, a virtual private network (VPN), a local area network
(LAN), a wireless LAN (WLAN), a wide area network
(WAN), a metropolitan area network (MAN), a portion of the
Internet, or another network 12 or a combination of two or
more such networks 12. The present disclosure contemplates
any suitable network 12. One or more links 20 couple a client
14, aweb server 16, or application server 18 to network 12. In
particular embodiments, one or more links 20 each include
one or more wireline, wireless, or optical links 20. In particu-
lar embodiments, one or more links 20 each include an intra-
net, an extranet, a virtual private network (VPN), a LAN; a
WLAN, a WAN, a MAN, a portion of the Internet, or another
link 20 or a combination of two or more such links 20. The
present disclosure contemplates any suitable links 20 cou-
pling clients 14, web servers 16, and application server 18 to
network 12.

In particular embodiments, a client 14 enables a user at
client 14 to access web pages residing at web servers 16. As an
example and not by way of limitation, a client 14 may be a
computer system (such as a suitable desktop computer sys-
tem, notebook computer system, or mobile telephone) having
a web browser. A user at client 14 may enter a Uniform
Resource Locator (URL) or other address directing the web
browser to a web server 16, and the web browser may gener-
ate a Hyper Text Transfer Protocol (HTTP) request and com-
municate the HTTP request to web server 16. Web server 16
may accept the HTTP request and generate and communicate
to client 14 a Hyper Text Markup Language (HTML) docu-
ment responsive to the HTTP request. The HTML document

10

15

20

25

30

35

40

45

50

55

60

65

2

from web server 16 may be a web page the web browser at
client 14 may present to the user. The present disclosure
contemplates any suitable web pages. As an example and not
by way of limitation, a web page may be an Extensible
Markup Language (XML) document or an Extensible Hyper-
Text Markup Language (XHTML) document. Moreover, the
present disclosure contemplates any suitable objects and is
not limited to web pages residing at web servers 16. As an
example and not by way of limitation, where appropriate, the
present disclosure contemplates executables, files (such as,
for example, MICROSOFT WORD documents and Portable
Document Format (PDF) documents), or other objects resid-
ing at database servers, file servers, peer-to-peer networks, or
elsewhere. In particular embodiments, a web server 16
includes one or more servers. The present disclosure contem-
plates any suitable web servers 16. Moreover, the present
disclosure contemplates any suitable clients 14. As an
example and not by way of limitation, in addition or as an
alternative to having a web browser for accessing web pages
residing at web servers 16, a client 14 may have one or more
applications for accessing objects residing at one or more
database servers, file servers, peer-to-peer networks, or else-
where.

Inresponse to input from a user at a client 14, client 14 may
generate a query for web pages containing one or more par-
ticular key words and communicate the query to application
server 18. In particular embodiments, application server 18
includes a hardware, software, or embedded logic component
or a combination of two or more such components for receiv-
ing and responding to queries from clients 14. As an example
and not by way of limitation, application server 18 may
receive from a client 14 a query for web pages containing one
or more particular key words, accept the query, and access
web search engine 22 to run the query and generate search
results responsive to the query. Web search engine 22 may
then run the query and generate and return the search results,
and application server 18 may communicate the search
results to client 14 for presentation to the user. In particular
embodiments, application server 18 includes one or more
servers. The present disclosure contemplates any suitable
application server 18. As an example and not by way of
limitation, application server 18 may include a catalog server
providing a point of access enabling users at clients 14 to
centrally search for objects across a distributed network, such
as an intranet or an extranet.

In particular embodiments, web search engine 22 includes
a hardware, software, or embedded logic component or a
combination of two or more such components for generating
and returning search results identifying web pages responsive
to queries from clients 14. The present disclosure contem-
plates any suitable web search engine 22. As an example and
not by way of limitation, web search engine 22 may be
BAIDU, GOOGLE, LIVE SEARCH, or YAHOO! SEARCH.
In particular embodiments, to run a query and generate search
results responsive to the query, web search engine 22 accesses
web search data 28. As an example and not by way of limi-
tation, web search data 28 may include inverted indexes of
web pages residing at web servers 16. The inverted indexes
may each includes sets of lists that may each correspond to a
unique key word, as described below. Indexing engine 24 may
generate one or more of the inverted indexes, and decision
diagram engine 26 may generate decision diagrams (such as
compact decision diagrams) representing lists of the inverted
indexes, as described below. The decision diagrams may
compress the lists to facilitate storage or processing. Indexing
engine 24, decision diagram engine 26, or both collectively
may manipulate inverted indexes or their lists (as described

US 9,405,819 B2

3

below) to facilitate queries run by web search engine 22 and
the generation of search results. In particular embodiments,
indexing engine 24 includes a hardware, software, or embed-
ded logic component or a combination of two or more such
components for generating and manipulating inverted
indexes. In particular embodiments, decision diagram engine
26 includes a hardware, software, or embedded logic compo-
nent or a combination of two or more such components for
generating decision diagrams representing lists of inverted
indexes and manipulating the represented lists. In particular
embodiments, web search engine 22, indexing engine 24, and
decision diagram engine 26 are all logically or physically
separate from each other. In particular embodiments, web
search engine 22 and indexing engine 24 are functionally,
logically, or physically combined with each other. As an
example and not by way of limitation, indexing engine 24
may functionally, logically, or physically include web search
engine 22. In particular embodiments, indexing engine 24
and decision diagram engine 26 are functionally, logically, or
physically combined with each other. As an example and not
by way of limitation, indexing engine 24 may functionally,
logically, or physically include decision diagram engine 26.
The present disclosure contemplates any suitable functional,
logical, or physical arrangement among web search engine
22, indexing engine 24, and decision diagram engine 26.

In particular embodiments, a BDD is a rooted directed
acyclic graph (DAG) representing a Boolean function. The
DAG includes decision nodes (one being aroot node) and two
terminal nodes, a 0 terminal and a 1 terminal. The terminal
nodes represent Boolean functions 1 and 0. Each decision
node represents a subfunction f, has a Boolean variable v as
a label, and has an outgoing 1 edge and an outgoing 0 edge
pointing to child nodes. The 1 edge points to a sub BDD
representing the function v-f, and the 0 edge points to a sub
BDD representing the function v-f. Put another way, the 0
edge represents an assignment of v to 1, and the 0 edge
represents an assignment of v to 0. The two edges point to
different nodes. A path from the root node of the BDD to the
1 terminal represents a set of variable assignments setting the
represented Boolean function to 1. A path from the root node
of the BDD to the 0 terminal represents a set of variable
assignments setting the represented Boolean function to 0.
FIG. 2 illustrates an example BDD representing the function
F=X,X3X,+X,X;X,. In particular embodiments, isomorphic
subgraphs should not be present ina BDD and the order of the
variables from the root node of the BDD to a terminal node
should be the same for all paths. Such a BDD is a reduced
ordered BDD (ROBDD). Herein, reference to a BDD encom-
passes an ROBDD, and vice versa, where appropriate. More-
over, reference to a BDD encompasses a partitioned ordered
binary decision diagram (POBDD), and vice versa, where
appropriate. In particular embodiments, for simplicity, a
BDD excludes a node if both edges of the node point to the
same node. In particular embodiments, a BDD excludes a
node if the node is a negative literal. A BDD that excludes
negative literals is a zero-suppressed decision diagram
(ZDD). Herein, reference to a BDD encompasses a ZDD, and
vice versa, where appropriate. The present disclosure con-
templates any suitable decision diagrams. In particular
embodiments, representing a list (such as a list of an inverted
index) using a decision diagram involves mapping elements
of the list to a Boolean function and efficiently storing the
resulting decision diagram on disk.

Particular embodiments facilitate storing a BDD more effi-
ciently. In particular embodiments, storing a BDD more effi-
ciently enables a central processing unit (CPU) cache to store
more nodes of the BDD, which facilitates processing of the

5

10

20

25

30

35

40

45

55

60

65

4

BDD by the CPU. Particular embodiments facilitate reducing
the number of bytes required by each node of a graph repre-
senting a BDD, which facilitates reducing the size of the
BDD. Particular embodiments facilitate reducing the size of a
BDD without reducing the number of nodes of the BDD.
Particular embodiments facilitate reducing the size a BDD
while keeping the BDD useful for functional manipulation.
Particular embodiments facilitate using BDDs in mobile con-
sumer applications, which often require the compression of
data.

As described above, decision diagram engine 26 generates
BDDs. In particular embodiments, to compact a BDD (which
may be a compact or nano decision diagram (nanoDD)) deci-
sion diagram engine 26 discards variable ordering and corre-
lates a location specified by a pointer to both the value of the
pointer and the position of the parent node. Under such con-
ditions, in particular embodiments, the minimum information
required for each child node of a BDD having 32 nodes is:

Variable ID: 5 bits

0-edge negated flag: 1 bit

THEN/ELSE pointers: 2*[log(S)] bits
The term S represents the number of nodes of the BDD. The
variable ID labels the node, and labels for 32 nodes requires at
least five bits, since 2°=32. THEN/ELSE pointers point to
child nodes. In particular embodiments, a THEN pointer is a
1-edge pointer and an ELSE pointer is a 0-edge pointer. In
particular embodiments, the 0-edge negated flag indicates
whether zero suppression negates the node. If the decision
diagram is a ZDD, the node structure need not include a
0-edge negated flag. Decision diagram engine 26 identifies a
number of bytes each node of the BDD requires, which in
particular embodiments is

{((5 + 1+ 2%[logSD+7)
—s |

Particular embodiments store the BDD assuming a custom-
ized node structure for the BDD. In particular embodiments,
nanoDDs generated by decision diagram engine 26 are zero-
suppressed nano binary decision diagrams (nanoZDDs).

In particular embodiments, to further compact the BDD,
decision diagram engine 26 drops the log(S) bits for the
THEN/ELSE pointers and correlates the value of each pointer
and the value (or position) of its parent node to the location the
pointer points to. Under such conditions, allotting only one or
two bytes to each pointer reduces per-node memory require-
ments. In particular embodiments, any suitable decision dia-
gram is capable of compacting, with decision diagram engine
26 appropriately resizing tables (and allocated more bits per
node) for storing the decision diagram as it becomes larger.
However, decision diagram engine 26 starts building the deci-
sion diagram as a compact decision diagram. In particular
embodiments, instead of resizing, decision diagram engine
26 directly applies decomposition/composition to graph con-
struction to directly convert a compact decision diagram to an
unreduced diagram. In particular embodiments, a compact
decision diagram facilitates communication between parallel
platforms. As an example and not by way of limitation, a first
platform may generate a decision diagram, make the decision
diagram compact for communication to a second platform
operating parallel to the first, and communicate the compact
decision diagram to the second platform. The second plat-
form may reconstruct the decision diagram from the compact
decision diagram for processing at the second platform. In
particular embodiments, nanoDDs are useful in any suitable

US 9,405,819 B2

5

application of BDDs, e.g., integrated circuit (IC) synthesis,
IC formal verification, etc. In particular embodiments, nan-
oDDs support any suitable BBD operations.

Particular embodiments use BDDs to implement inverted
indexes for a search engine (such as web search engine 22) or
similar application. In particular embodiments, using BDDs
to implement an inverted index facilitates storing the inverted
index more efficiently. Particular embodiments facilitate stor-
ing the inverted index more efficiently without adversely
affecting desirable manipulation properties of the inverted
index. In particular embodiments, using BDDs to implement
an inverted index facilitates manipulation of the inverted
index.

As described above, indexing engine 24 generates inverted
indexes. In particular embodiments, an inverted index is a
data structure that operates on a set of documents or other
objects (such as, for example, web pages in the World Wide
Web) to identify one or more subsets of the documents that
include one or more key words. As an example and not by way
of limitation, the key words may represent a query a user has
submitted to a Web search engine. Particular embodiments
may store an inverted index as a set of lists, and the lists may
each correspond to a unique keyword w, and include numeri-
cal identifiers of documents containing w,. An inverted index
often has a tendency to become very large as it builds, with
direct implications on storage-space requirements and access
time. In particular embodiments, indexing engine 24, deci-
sion diagram engine 26, or both compress the lists of the
inverted index for storage, allowing for quick and incremental
decompression of the lists, according to particular needs.

In particular embodiments, an efficient scheme for com-
pressing lists for quick decompression is based on y-codes. In
ay-code, an integer x>0 is factored into 2°+m , where e=|log,
x]. The code of x is the concatenation of (e+1) in unary with
m in binary. As an example, if the code for x=13 is computed,
then e=3, m=5, and x=2°+5. The unary representation of
(e+1) is 1110, and therefore the y-code for x is 1110101. An
advantage of y-codes is they require exactly 1+2|log, x| bits
to represent X, which provides significant savings compared
with fixed-length binary representation when X is on average
relatively small.

In particular embodiments, y-codes are used as follows in
the context of lists. The elements of the list are sorted, and the
pairwise differences between consecutive entries are vy
encoded. As an example and not by way of limitation, to
compress the list [23,125,37,54,86,33], the sorted list and the
pairwise-differences list may be:

Sorted:
Pairwise differences:

[23,33,37,54,86,125]
[23,10,4,17,32,39]

The y-encoded list therefore may be:

[111100111,1110010,11000,111100001,11111000000,11111000111]
As an example and not by way or limitation, consider the
list [23,33,37,54]. In binary, the elements of the list are
[010111,100001,100101,110110]. For binary encoding, to
obtain a Boolean function that represents the list with a mini-
mum number of variables, each variable may be assigned to
each significant bit weight. A function corresponding to the
above list may be:

FEX XXX XX XX 3N XK 6+ XX 3X 4% 5K

For linear encoding, to obtain an alternative representation, a
different variable may be assigned to each document ID. Such
representation may be impractical though, since a very large

30

40

45

50

6

number of document may be involved. Moreover, node shar-
ing may be impossible unless a single Boolean function rep-
resents multiple lists.

For base-2* encoding, the list elements may be represented
in a 2* base and linear and binary encoding may then be
combined. 2* distinct variables may be used to represent the
each of the base-2* digits in a one-hot manner. As an example
and not by way of limitation, to encode the number 54 (which
is 312 in base-4) each of the digits may be one-hot encoded,
obtaining 1000:0010:0100. Therefore, clement 54 may be
encoded as g=X,X,X,XsXX,XgXoX X, X, The increase in
the number of variables may seem inefficient, but it in fact
may lead to better sharing and more compact representation,
especially with ZDDs, which as described above store nega-
tive literals more efficiently.

For each list, a corresponding Boolean function may be
constructed and a BDD (which preferably may be a ZDD
since they store negative literals more efficiently) may be built
for the Boolean function using a suitable BDD package. Letn
be the number of variables and d be the number of nodes in the
BDD. For each node of the BDD, S, =[log(n)] bits may be
sufficient to index a variable labeling the node and S ~[log
(d)] bits may be sufficient to identify its location. Accord-
ingly, each node in a nanoDD may be structured as:

variable: s, bits 1 edge: s; bits 0 edge: s bits

A single nanoDD node may require exactly 2s+s,, bits.
Nodes may be stored consecutively in memory or on disk in
the order depth-first traversal would visit them, with 0 edges
followed before 1 edges. Accordingly, information may be
incrementally extracted from a nanoDD on disk. Terminal
nodes need not be explicitly stored, since they may be
assigned fixed “virtual” positions.

One approach to compacting an index (forward or inverted)
of'web pages involves encoding in binary the page IDs and the
key word IDs in the index and adding each {page_ID, key_
word_ID} as a minterm to a decision diagram representing
the index. Such an approach tends to parse web pages for
indexing very slowly. Another approach to compacting an
index of web pages involves encoding in binary the page IDs
in the index and building a separate decision diagram for each
key word in the index. Such an approach tends to compact the
index less than the previous approach, but works significantly
faster. Yet another approach to compacting an index of web
pages involves building a decision diagram for each key word
in the index (the decision diagram representing the set of web
pages containing the word) and discarding the idea of sharing
among all the decision diagrams. Each decision diagram
includes approximately a few tens to a few thousands of
nodes. The size of the decision diagram is known after it is
built. The minimum information required for each node is:

Variable ID: 5 bits

0-edge negated flag: 1 bit

THEN/ELSE pointers: 2* [log(S)] bits
The term S represents the number of nodes of the decision
diagram. For each decision diagram, decision diagram engine
26 identifies the number of bytes each node of the decision
diagram requires, which is

{((5 + 1+ 2%[logSD+7)
—s |

US 9,405,819 B2

7

Alternatively, if the decision diagram is a ZDD, the node
structure need not include a 0-edge negated flag. Decision
diagram engine 26 stores each decision diagram assuming a
customized node structure for the decision diagram. Such an
approach tends to compact the index significantly more than
the two previous approaches. In particular embodiments, for
each key word in the decision diagram, decision diagram
engine 26 compares the size (in terms of memory require-
ments) of the decision diagram with the size (in terms of
memory requirements) of the list represented by the decision
diagram and stores the smaller of the two. Particular embodi-
ments increase space efficiency of inverted indexes. Particu-
lar embodiments facilitate complex Boolean operations on
inverted indexes for search results. Particular embodiments
facilitate implementation of inverted indexes for mobile
applications, where compression is often particularly useful.

Conjunction is a common operation between or among K
ordered lists. A conjunction may be implemented as a K-way
merge. Elements may be read one at a time, starting from the
head of the lists and proceeding through the lists until having
detected all common elements. As an example and not by way
of limitation, the common elements between the two follow-
ing lists may be detected:

list1:
list2:

10,20, 23, 36, 47, 52
16, 18, 23, 47

Pointer p, points to elements of list1 and pointer p, points to
elements of 1ist2. Initially p, points to 10 in listl and p, points
to 16 in list2. Because p, points to a smaller element than p,
points to, p, advances to 20, the next element in listl. Now p,
points to a smaller element than p, points to, so p, advances to
18, the next element in list2. Because 18 is smaller than 20, p,
advances to 23 in list2. Then p, advances to 23 in listl.
Pointers p, and p, now point to a first common element, and
the operation outputs the first common element, which is 23.
Then p, advances to 36 in listl and p, advances to 47 in list2.
Pointer p, now points to a smaller element than p, points to, so
p, advances to 47 in list1. Pointers p, and p, point to a second
common element, and the operation outputs the second com-
mon element, which is 47. Because pointer p, has reached the
end of list2, there are no more common elements and the
operations ends.

A basic operation for traversing lists is get_next_element
(L). For nanoDDs, particular embodiments efficiently imple-
ment the operation get_next_clement_greq(L.element) to
detect a next element in list L. that is greater than or equal to
element. To implement get_next_clement_greq(L.element),
particular embodiments maintain an array of variable assign-
ments A for a nanoDD and update the array while traversing
the nanoDD. To obtain the first element stored in the nanoDD,
the operation performs a depth-first traversal starting from the
root of the nanoDD. The operation follows O edges first and
proceeds until the operation reaches the 1 terminal of the
nanoDD. For each visited node, the operation monitors the
variable ID of the node and the ID of the edge leading to the
node. The operation initially assigns the value O to variables
not appearing in the path from the root of the nanoDD to the
1 terminal.

In particular embodiments, when indexing engine 24 or
decision diagram engine 26 calls get_next_clement_greq(L,
element), the operation compares the binary representation of
element with array A and detects the number of common
variable assignments from the root. The operation backtracks
until it reaches the first noncommon variable from the top (or
the root if there are no common assignments) and traverses

10

15

20

25

30

35

40

45

50

55

60

o
o

8

the nanoDD according to the remaining assignments imposed
by element. As an example and not by way of limitation,
consider the operation of get_next_element_greq (L,ele-
ment) on the decision diagram illustrated by FIG. 2. As
described above, the decision diagram illustrated by FIG. 2
represents the function f=x,x;x,+X,X;X,. The decision dia-
gram therefore encodes the list [8,11,12,15]. FIG. 3 illustrates
an example traversal of the decision diagram obtaining the
first element of the encoded list. The variable assignments
from the traversal are (X,,X,,X5,%X,4)=(1,0,0,0), which yields 8,
the first element of the list. To access the next element of the
list, the operation searches for the next element greater than 8
with get_next_element_greq(L.,9). The operation then back-
tracks to variable x, (since the first three variable assignments
between (1,0,0,0) and (1,0,0,1) are the same) and continues
along the path illustrated by FIG. 4. The variable assignments
from the traversal are (1,0,1,1), which yields 11. The opera-
tion similarly obtains the remaining elements of the list.

In particular embodiments, using decision diagrams for
searches as described above enables the searches to skip
elements of underlying lists when the presence of the skipped
elements is unimportant. As an example and not by way of
limitation, consider the conjunction between the lists [8,11,
12,15] and [7,13,15]. The operation may obtain the first ele-
ments of both lists. Since 8 is larger than 7, the operation may
search the second list for the next element greater than or
equal to 8, which leads to 13. The operation may then run
get_next_element_greq(L.,13) on the first list. The operation
may detect that (1,1,0,1) (which is 13 in binary) has only its
first variable in common with (1,0,0,0), which is 8 in binary.
The operation may then backtrack directly to variable x, and
traverse down the nanoDD consistent with the requested
assignment (1,1,0,1), eventually ending up at (1,1,1,1).

The present disclosure encompasses all changes, substitu-
tions, variations, alterations, and modifications to the
example embodiments described herein that a person having
ordinary skill in the art would comprehend. Similarly, where
appropriate, the appended claims encompass all changes,
substitutions, variations, alterations, and modifications to the
example embodiments described herein that a person having
ordinary skill in the art would comprehend.

What is claimed is:

1. A method comprising:

accessing an inverted index of a searchable set of objects

comprising key words, the inverted index comprising a
plurality of lists each corresponding to a particular key
word and identifying a particular subset of the objects
comprising the particular key word;

generating a binary decision diagram (BDD) for each of

one or more of the lists, the BDD corresponding to the
particular key word of the list, each decision node of the
BDD representing an object in the searchable set of
objects comprising the particular key word of the list;
and

storing each of one or more of the lists as its BDD, storage

of the BDD facilitating more efficient storage of the
inverted index, wherein storing a BDD comprises stor-
ing for each of its nodes only a variable ID of the node
that uniquely labels the node, a 0-edge negated flag, and
THEN/ELSE pointers using a minimum number of bits
for a size of the BDD.

2. The method of claim 1, wherein one or more of the BDDs
are zero-suppressed nano binary decision diagrams
(nanoZDDs).

3. The method of claim 1, wherein one or more of the BDDs
are partitioned ordered binary decision diagrams (POBDDs).

US 9,405,819 B2

9

4. The method of claim 1, wherein one or more of the BDDs
have customized node structures.

5. The method of claim 1, wherein the objects are web
pages and a web search engine uses the stored BDDs to
generate search results.

6. A method comprising:

accessing a binary decision diagram (BDD) representing a

list of an inverted index of a searchable set of objects
comprising key words, the list corresponding to a par-
ticular key word and identifying a particular subset of
the objects comprising the particular key word, the BDD
corresponding to the particular key word of the list, each
decision node of the BDD representing an object in the
searchable set of objects comprising the particular key
word of the list;

determining elements of the list by:

traversing the BDD depth first along one or more paths
to terminal node 1 of the BDD following 0 edges of
decision nodes of the BDD first; and

assigning a set of values to an array of variables for the

elements of the list according to each of the paths tra-
versed; and

using the determined elements of the list to calculate a

conjunction between the list and one or more other lists
of the inverted index.
7. The method of claim 6, wherein determining a first
element of the list comprises:
traversing the BDD depth first along a first path from a root
node of the BDD to terminal node 1 of the BDD follow-
ing 0 edges of decision nodes of the BDD first; and

assigning a 1 to each variable in the array corresponding to
a decision node of the BDD having a 1 edge in the first
path, and assigning a 0 to each variable in the array
corresponding to a decision node of the BDD having a 0
edge in the first path or corresponding to a decision node
excluded from the BDD.

8. The method of claim 6, wherein the BDD is a zero-
suppressed nano binary decision diagram (nanoZDD).

9. The method of claim 6, wherein one or more of the BDDs
are partitioned ordered binary decision diagrams (POBDDs).

10. The method of claim 6, wherein the objects are web
pages.

11. One or more non-transitory computer-readable media
encoding software operable when executed to:

access an inverted index of a searchable set of objects

comprising key words, the inverted index comprising a
plurality of lists each corresponding to a particular key
word and identifying a particular subset of the objects
comprising the particular key word;

generate a binary decision diagram (BDD) for each of one

or more of the lists, the BDD corresponding to the par-
ticular key word of the list, each decision node of the
BDD representing an object in the searchable set of
objects comprising the particular key word of the list;
and

store each of one or more of'the lists as its BDD, storage of

the BDD facilitating more efficient storage of the
inverted index, wherein storing a BDD comprises stor-
ing for each of its nodes only a variable ID of the node
that uniquely labels the node, a 0-edge negated flag, and
THEN/ELSE pointers using a minimum number of bits
for a size of the BDD.

12. The computer-readable media of claim 11, wherein one
or more of the BDDs are zero-suppressed nano binary deci-
sion diagrams (nanoZDDs).

10

15

20

25

30

40

45

50

55

60

65

10

13. The computer-readable media of claim 11, wherein one
or more of the BDDs are partitioned ordered binary decision
diagrams (POBDDs).

14. The computer-readable media of claim 11, wherein one
or more of the BDDs have customized node structures.

15. The computer-readable media of claim 11, wherein the
objects are web pages and a web search engine uses the stored
BDDs to generate search results.

16. One or more non-transitory computer-readable media
encoding software operable when executed to:

access a binary decision diagram (BDD) representing a list

of an inverted index of a searchable set of objects com-
prising key words, the list corresponding to a particular
key word and identifying a particular subset of the
objects comprising the particular key word, the BDD
corresponding to the particular key word of the list, each
decision node of the BDD representing an object in the
searchable set of objects comprising the particular key
word of the list;

determine elements of the list by:

traversing the BDD depth first along one or more paths
to terminal node 1 of the BDD following 0 edges of
decision nodes of the BDD first; and

assigning a set of values to an array of variables for the
elements of the list according to each of the paths
traversed; and

use the determined elements of the list to calculate a con-

junction between the list and one or more other lists of
the inverted index.
17. The computer-readable media of claim 16, wherein
determining a first element of the list comprises:
traversing the BDD depth first along a first path from a root
node of the BDD to terminal node 1 of the BDD follow-
ing 0 edges of decision nodes of the BDD first; and

assigning a 1 to each variable in the array corresponding to
a decision node of the BDD having a 1 edge in the first
path, and assigning a 0 to each variable in the array
corresponding to a decision node of the BDD having a 0
edge in the first path or corresponding to a decision node
excluded from the BDD.

18. The computer-readable media of claim 16, wherein the
BDD is a zero-suppressed nano binary decision diagram
(nanoZDD).

19. The computer-readable media of claim 16, wherein one
or more of the BDDs are partitioned ordered binary decision
diagrams (POBDDs).

20. The computer-readable media of claim 16, wherein the
objects are web pages.

21. A system comprising:

means for accessing an inverted index of a searchable set of

objects comprising key words, the inverted index com-
prising a plurality of lists each corresponding to a par-
ticular key word and identifying a particular subset of
the objects comprising the particular key word;

means for generating a binary decision diagram (BDD) for

each of one or more of the lists, the BDD corresponding
to the particular key word of the list, each decision node
of the BDD representing an object in the searchable set
of objects comprising the particular key word of the list;
and

means for storing each of one or more of the lists as its

BDD, storage of the BDD facilitating more efficient
storage of the inverted index, wherein storing a BDD
comprises storing for each of'its nodes only a variable ID
of the node that uniquely labels the node, a 0-edge
negated flag, and THEN/ELSE pointers using a mini-
mum number of bits for a size of the BDD.

US 9,405,819 B2

11

22. A system comprising:
means for accessing a binary decision diagram (BDD)
representing a list of an inverted index of a searchable set
of objects comprising key words, the list corresponding
to a particular key word and identifying a particular
subset of the objects comprising the particular key word,
the BDD corresponding to the particular key word of the
list, each decision node of the BDD representing an
object in the searchable set of objects comprising the
particular key word of the list;
means for determining elements of the list by:
traversing the BDD depth first along one or more paths
to terminal node 1 of the BDD following 0 edges of
decision nodes of the BDD first; and
assigning a set of values to an array of variables for the
elements of the list according to each of the paths
traversed; and
means for using the determined elements of the list to
calculate a conjunction between the list and one or more
other lists of the inverted index.

#* #* #* #* #*

10

20

12

